
Abstract GROMACS 3.0 is the latest release of a versa-
tile and very well optimized package for molecular simu-
lation. Much effort has been devoted to achieving ex-
tremely high performance on both workstations and par-
allel computers. The design includes an extraction of vi-
rial and periodic boundary conditions from the loops
over pairwise interactions, and special software routines
to enable rapid calculation of x–1/2. Inner loops are gener-
ated automatically in C or Fortran at compile time, with
optimizations adapted to each architecture. Assembly
loops using SSE and 3DNow! Multimedia instructions
are provided for x86 processors, resulting in exceptional
performance on inexpensive PC workstations. The inter-
face is simple and easy to use (no scripting language),
based on standard command line arguments with self-
explanatory functionality and integrated documentation.
All binary files are independent of hardware endian and
can be read by versions of GROMACS compiled using
different floating-point precision. A large collection of
flexible tools for trajectory analysis is included, with
output in the form of finished Xmgr/Grace graphs. A ba-
sic trajectory viewer is included, and several external
visualization tools can read the GROMACS trajectory
format. Starting with version 3.0, GROMACS is avail-
able under the GNU General Public License from
http://www.gromacs.org.

Keywords Parallel molecular dynamics · Simulation ·
Algorithmic optimization · Assembly loops · Benchmark

Introduction

The GROMACS package is a versatile collection of pro-
grams and libraries for the simulation of molecular dy-
namics and the subsequent analysis of trajectory data.
Although it is primarily targeted at biological molecules
with complex bonded interactions, the very effective im-
plementation of nonbonded force calculations makes
GROMACS suitable for all kinds of molecular dynamics
simulations based on pair potentials. Apart from normal
potential functions like Lennard-Jones, Buckingham and
Coulomb, it is possible to use arbitrary forms of interac-
tions with spline-interpolated tables. The history of the
package dates back to the late 1980s in the Berendsen/Van
Gunsteren group at the University of Groningen, The
Netherlands. As parallel computers were becoming more
common, there was a need for an efficient parallel imple-
mentation of a general-purpose molecular dynamics
code. The GROMOS software [1] was chosen as a basis
and reference for the simulation algorithms, while the
parallelization concepts were adopted from the earlier
literature. [2, 3]

The limited availability of parallel programming tools
(except for Transputer systems with the dedicated
OCCAM language) and a wish to use more structured
programming techniques led to a decision to implement
the whole package from scratch in the C language. This
was not a trivial choice, since at the time there was a
large gap between the optimization capabilities of For-
tran and C compilers. It has, however, enabled a faster
development cycle and more flexible code, using stan-
dard C features like dynamic memory allocation and ad-
vanced debuggers. With the later standardization of
ANSI C, this has had the further advantage that the
GROMACS code can be compiled on essentially any
computer where a C compiler is present. To address the
performance issue, the inner loops of the GROMACS
code were rewritten in Fortran around 1995. Since al-
most all the execution time is spent in this small part of
the program, it provided a speedup of a factor of 3 on a
Silicon Graphics R8000 machine. The gap between For-

E. Lindahl
Theoretical Physics, KTH, 10044 Stockholm, Sweden

B. Hess
Dept. of Biophysical Chemistry, Groningen University,
Nijenborgh 4, 9747 AG, Groningen, The Netherlands

D. van der Spoel (✉)
Dept. of Biochemistry, Uppsala University,
Husargatan 3, Box 576, 75123 Uppsala, Sweden
e-mail: spoel@xray.bmc.uu.se
Tel.: +46-18-4714205, Fax: +46-18-511755

J Mol Model (2001) 7:306–317
DOI 10.1007/s008940100045

O R I G I N A L PA P E R

Erik Lindahl · Berk Hess · David van der Spoel

GROMACS 3.0: a package for molecular simulation
and trajectory analysis

Received: 9 April 2001 / Accepted: 26 June 2001 / Published online: 25 August 2001
© Springer-Verlag 2001

307

tran and C has narrowed since then, but it is still present,
and hence the Fortran inner loops have been retained in
the GROMACS code. From this version, they have also
been supplemented with assembly loops for common PC
hardware. In the early stages of the GROMACS project
two dedicated parallel computers were built, both based
on the Intel i860 RISC processor and consisting of
32 nodes. These machines are described in some detail
in earlier papers, [4, 5] with the essentials of the parallel
algorithms covered in References [5, 6] Since then,
GROMACS has turned into a pure software project, de-
signed for UNIX workstations and massively parallel
computers using MPI (Message Passing Interface) for
communication.

In the current release, the GROMACS source consists
of roughly 150,000 lines of code, predominantly in the C
language. It is built as two general libraries of molecular
dynamics subroutines, and about 75 executable pro-
grams, which are linked to the libraries. The only exter-
nal software required besides the C compiler is the free
FFTW (Fastest Fourier Transform in the West,
http://www.fftw.org/) library. [7, 8] For parallel opera-
tion an MPI library is needed, such as the free LAM (Lo-
cal area multicomputer, http://www.mpi.nd.edu/lam) or
MPICH (http://www-unix.mcs.anl.gov/mpi/mpich). All
massively parallel computers nowadays offer efficient
machine-specific MPI implementations. The configura-
tion of the source and makefiles is completely automated
using GNU autoconf, optimization options and the use of
Fortran or assembly inner-loops are usually deduced au-
tomatically from the computer architecture and operating
system. Last but not least, a 200+ page user manual is
available, [9] which contains an introduction to molecu-
lar simulation and many details about potentials, top-
ologies etc.

Programming concepts

General

There are a few key concepts worth mentioning that
have contributed significantly to the success of the
GROMACS design. Although we decided on a third gen-
eration programming language as the backbone of the
code, we did adopt some concepts from object-oriented
languages. C structures are used throughout the software,
each with specialized functions operating on them, pro-
viding encapsulation of data structures. Dedicated sub-
routines, including extensive error checking and an ar-
chitecture abstraction layer, have been implemented to
perform file I/O operations on most of these structures.
By changing a single typedef (using an option to the
configure script) it is possible to compile the entire pack-
age in either single or double floating-point precision.

It is difficult to design and maintain the architectural
integrity of a large scientific software package, since the
specification is usually a moving target. By enforcing
strong typing of the data structures and providing a capa-

ble library for basic functionality that is used by all pro-
grams, it has nevertheless proven easy to add new func-
tionality and optimizations without major code changes.
For example, all programs call a function parse_com-
mon_args to parse command line arguments, passing it a
number of special data structures that are initialized stat-
ically in the program code. Since this function is used in
all programs, it was relatively easy to build a graphical
(X/Motif) interface into this routine, which is now auto-
matically part of all programs. Similarly, every single
tool that reads trajectories has support for starting and
finishing the analysis at times given as command line ar-
guments, without any extra user code.

Extending the GROMACS code should be feasible
for anyone with a working knowledge of the C language,
and a basic understanding of the MD algorithm. There is
no need for users to program in Fortran or assembly lan-
guage. A template for building analysis tools is part of
the source code.

Algorithmic optimization

Although versatility and a portable code base are nice
benefits, speed is essentially everything for a molecular
dynamics code, since a typical run might take weeks or
months to complete. GROMACS is very fast for several
reasons. The most important optimization in this context
is that any unnecessary calculations must be avoided at
the algorithm level. A good example of this is that we
have been able to extract the computation of the virial
from the inner loops of the program by rewriting it as a
single sum over particles. [10, 11] This increases the per-
formance by roughly 40% without sacrificing any re-
sults: the exact full virial necessary for the pressure cal-
culation is still obtained.

Another example is that the image calculation con-
nected to simulations employing periodic boundary con-
ditions is not performed in the inner loop at all. Instead,
the correct image is calculated when performing the
neighbor search and stored as a translation vector in the
Verlet neighborlist. [12] Using a minimum image con-
vention there can be at most 11 different such translation
vectors in a triclinic cell (including the zero translation
in the central box), which we essentially treat as inde-
pendent parts of the list. The translation vector only has
to be added to the parent particle of the list once, outside
the innermost pair interaction loops. This increases sim-
ulation performance significantly through better instruc-
tion scheduling, since conditional statements are com-
pletely avoided in the inner loops. A similar translation
vector solution is used to remove all periodic boundary
condition calculations from the bonded interactions.

Force calculation

Even after substantial algorithmic alterations, the calcu-
lation of pairwise nonbonded forces still dominates the

308

simulation, typically accounting for 90% of the run time.
On most computers, the single most expensive part of
these loops is the calculation of pairwise distances r
from particle coordinates, due to the complexity of the
square root operation (squaring the inter-particle vector
produces r2). Further, most interactions do not depend
directly on the distance r but rather r–1 (Coulomb) or
integer multiples of r2 (e.g. Lennard-Jones). In
GROMACS, this bottleneck has been circumvented by
constructing a special software routine for the reciprocal
square root operation x–1/2 to calculate r–1 directly from
r2. An initial table lookup yields an approximate result a
with 12 bits of accuracy, and the full single precision re-
sult is obtained after a single Newton–Raphson iteration
[13]

r−1=(1/2)a(3−r2a2) (1)

Double precision requires another iteration, but for most
normal simulations single precision provides sufficient
accuracy. This software approach more than doubles the
total performance on normal processors without a hard-
ware square root1. In addition, not all interactions require
the inverse distance. For pure Lennard-Jones potentials
we only need the square of the inverse distance, i.e., the
reciprocal operation 1/x when starting from r2. If the
hardware does not provide a fast instruction for this, it is
accomplished with a similar table lookup and the itera-
tion [13]

r−2=a(2−r2a) (2)

In the most recent version of GROMACS we have ex-
tended this approach to a complete inner loop generator,
which at build time constructs separate routines in either
C or Fortran for all possible combinations of interac-
tions. The optional software replacements for x–1/2 and/or
x–1 are inlined, explicit prefetching of coordinates and
forces can be used, and it is even possible to vectorize
the entire distance calculation to use faster library func-
tions provided by hardware vendors. Apart from the nor-
mal routine, each interaction loop is also created in three
special versions to further optimize for common cases
like general solvents, water molecules, and most impor-
tant, interactions between pairs of water molecules. This
makes it possible to hide the latencies of coordinate
fetching and table lookups almost completely, by treating
several interactions in parallel. In the current version,
this results in about 80 different specialized inner loops
entirely without conditional statements. For each loop
there is a specific neighborlist, although not all of them
are used in one simulation. The resulting performance
improvements depend very much on the type of system
simulated, but it can be as high as another factor of 2.

This automatic inner loop generation provides very
good performance on a broad range of hardware, but in
many cases neither C nor Fortran compilers are able to
take full advantage of the available hardware. This is es-

pecially significant for common PC processors like Intel
Pentium III and AMD Athlon. These processors have
dedicated multimedia instructions and registers that are
primarily aimed at games and graphics applications, but
since both x–1 and x–1/2 are frequent operations in light-
ing processing, table lookups for these important func-
tions have been implemented in hardware. Obviously,
this makes the multimedia instructions very attractive for
use in molecular simulation and scientific applications in
general. In the current version of GROMACS, the entire
inner loops have been implemented in assembly code to
make use of either 3DNow! instructions [14] on AMD
K6 Athlon and Duron processors, or Intel SSE instruc-
tions [15] on Pentium III and IV. Both of these architec-
tures further support single instruction, multiple data
programming (SIMD), which makes it possible to unroll
the interaction calculation twice when using 3DNow!
and fourfold with SSE support (see Fig. 1). This increas-
es GROMACS’ performance by another factor of 2 com-
pared to the already fast software square root implemen-
tation2. Using SSE instructions, the entire assembly
Lennard-Jones inner loop takes 27 clock cycles per pair
interaction on a Pentium III. For comparison, the GNU C
library square root alone takes more than 60 clock cy-
cles.

File formats

The parameters and topology files used to create a
GROMACS run input file are all in readable clear text
and free layout format. Since the C preprocessor is used
to scan topologies it is easy to include force fields, mole-
cule definitions and even to introduce conditional parts

Fig. 1 The GROMACS assembly inner loops on x86 processors
are implemented with SIMD instructions (single instruction, mul-
tiple data), demonstrated here by four parallel addition operations
issued as a single instruction. The inner loops are thus effectively
unrolled a factor of 4 if the CPU supports Intel SSE instructions
and twice for AMD 3DNow! code. In practice the speedup is
about a factor of 2 for both platforms due to differences in bus
bandwidth and instruction pipeline length

1 Although many processors provide assembly instructions for the
square root it is often only a mnemonic for a slow software calcu-
lation.

2 The only twofold unrolling of 3DNow! compared to four with
SSE is compensated for by a shorter pipeline and special instruc-
tions to perform the Newton–Raphson iterations.

309

and macros. The input files for mdrun (the molecular dy-
namics program) as well as the energy and trajectory
files are written in an architecture-independent format,
making it possible to share files between big and small
endian machines, and even to read double precision files
with a single precision analysis program, and vice versa.
Simulation coordinates can be written directly as com-
pressed trajectories using only about 4 bytes for each co-
ordinate triplet. This is achieved by a lossy compression
algorithm that limits accuracy3, but the level of compres-
sion can be selected by the user. The GROMACS li-
braries provide generic routines to read and write coordi-
nate and/or velocity data, making them completely inde-
pendent of the file formats. Every time a new format is
added it is thus automatically supported by all programs
in the package. It is also possible to compress most files
with gzip or UNIX compress, and GROMACS will un-
compress them on the fly upon reading.

User interface

The GROMACS user interface is designed to be simple
and consistent – there is no scripting language involved.
All programs are controlled by command line arguments
and hence appear to the user as any other UNIX com-
mand. In each program the -h option yields a description
of the function of the program and an overview of all ar-
guments that may be given. This documentation is gener-
ated automatically from options and comments contained
in the source code, and can be printed to the screen (using
the -h option) or to a file in either HTML, LATEX or
nroff (UNIX manual page) format. This ascertains that
the documentation is kept up to date and that there are no
differences between the various formats.

If Motif or lesstif is present on the build system, the
configuration script automatically includes code for an
X/Motif user interface to GROMACS; this means that in
addition to the command line interface one can optional-
ly select options by clicking in a dialog box (Fig. 2). The
dialog box further features a context sensitive help line,
which displays information about the field where the
mouse cursor is positioned over. This may help new us-
ers to grasp an overview of the features in each program,
while simultaneously providing a smooth transition to
use of the command line interface later.

GROMACS includes a simple trajectory viewer
(ngmx) for animation and general visualization that only
requires standard X libraries, which are present on virtu-
ally every UNIX workstation. On systems that support
OpenGL, users are encouraged to try external viewers,
either the visual molecular dynamics (VMD) [16] pro-
gram or gOpenMol. [17] Both of these natively support
the GROMACS trajectory file formats and provide more
advanced tools for visual inspection of simulation trajec-
tories.

Most of the GROMACS analysis tools provide output
data files formatted to serve as complete input for the
Grace (formerly Xmgr) program, [18] a very capable
graphing tool that is more or less a de facto standard un-
der UNIX. Observables like energy, radius of gyration of
a molecule, etc., are presented as functions of time in a
graph including axis labels and legends.

Overview of features

Molecular dynamics

The GROMACS molecular dynamics code contains
several algorithms that have been developed in the
Berendsen group over the years, as well as many contri-
butions from elsewhere. The leap-frog integrator is used

3 Typically, coordinates are stored as integer multiples of picome-
ters.

Fig. 2 Example X/Motif dialog
box for the mdrun program,
where input files and options
can be selected graphically.
Context sensitive help lines are
displayed as the cursor is
moved over the different ob-
jects, and more extensive help
is available in a separate win-
dow

310

in two versions, for molecular dynamics and stochastic
dynamics (velocity Langevin dynamics). [19] It was
chosen after careful comparison with other integrators
[20] due to its stability at long time steps and the advan-
tage that it requires only one call to the constraining
algorithm for each time step. For both algorithms
GROMACS determines the kinetic energy from the ve-
locity at the whole step, which is calculated as the aver-
age of the velocities at minus and plus half a step. This
results in more accurate energies compared to the normal
leap-frog velocities which are offset by half a step. There
is also a first order integrator for Brownian dynamics
(position Langevin dynamics). Each of these three inte-
grators supports all features of GROMACS.

Simulations can be performed without periodic
boundary conditions, or with periodic boundary condi-
tions in a general triclinic cell. This means the program
supports geometries like rectangular cells, the rhombic
dodecahedron and the truncated octahedron, since all
these are special cases of a triclinic cell. With periodic
boundary conditions, a grid-based neighbor-searching is
used to determine which interactions are within the cut-
off distance. The GROMACS grid search algorithm and
lattice summation methods are extremely efficient and
just as fast for a triclinic cell as for a rectangular cell.
This makes the rhombic dodecahedron the preferable
cell for simulation of globular proteins in solvent; since
its volume is only 71% of that of a cubic cell one can use
fewer solvent molecules with the same periodic image
distance. Pressure coupling is implemented for all types
of simulation cells (including full support for cell defor-
mation) using either the weak coupling scheme [21] or a
Parinello–Rahman barostat. [22, 23] Temperature can be
controlled groupwise, either with weak coupling or
Nosé–Hoover thermostats. [24, 25] When periodic
boundary conditions are applied, long-range interactions
can be calculated using either the particle–particle parti-
cle–mesh algorithm [26] or the more accurate particle
mesh Ewald [27, 28] sum. A reference (read inefficient)
implementation of the standard Ewald algorithm [29] is
also available.

GROMACS provides extensive support for constraint
dynamics. The most generally applicable algorithm is
still SHAKE, [30] in which the successive overrelaxation
optimization [31] has been implemented. The default al-
gorithm for pure bond constraints in GROMACS is,
however, the non-iterative LINCS, [32] which is much
more stable. LINCS makes it possible to use consider-
ably longer time steps when the fast degrees of freedom
due to hydrogen atoms are removed from the system (up
to 6–7 fs when hydrogens are converted to dummy parti-
cles). [33] Both SHAKE and LINCS include support for
free energy calculations where constraint lengths are
changed. Water molecules can be constrained using the
analytical SETTLE [34] algorithm leading to consider-
able performance improvement compared to SHAKE.
Some additional algorithms and features implemented in
the package are listed in appendix A.

Free energy calculations

GROMACS can calculate the free energy difference be-
tween two systems A and B, characterized by hamiltoni-
ans HA and HB, using a coupling parameter approach.
The general Hamiltonian is constructed as a function of a
parameter λ:

H=H(λ) (3)

such that H(0)=HA and H(1)=HB. The free energy differ-
ence between states A and B is obtained by performing
simulations at several values of λ, from which
〈∂H(λ)/∂λ〉 is obtained. Integrating this quantity from
λ=0 to 1 gives the free energy difference between states
A and B. [35] This can be automated by changing the
value of λ linearly with simulation time (a.k.a. the slow
growth algorithm). It is, however, preferable to perform
simulations at fixed λ values, such that equilibration of
〈∂H(λ)/∂λ〉 can be monitored. A numerical integration
algorithm can then be used to compute the net free ener-
gy difference between states A and B.

The form of the potential at intermediate values of
can be chosen freely, since these are non-physical states.
The potential should be chosen such that 〈∂H(λ)/∂λ〉 is as
smooth as possible. For the bonded interactions, GRO-
MACS uses linear interpolation of force constants, bond
lengths and angles with respect to the coupling parame-
ter λ. Nonbonded interactions between pairs of particles
of which at least one is perturbed are interpolated using
the general soft-core potential

Vsc(r)=(1−λ)VA(rA)+λVB(rB) (4)

rA=(ασA
6λ2+r6)1/6 (5)

r=[ασB
6(1−λ)2+r6]1/6 (6)

where VA and VB are the normal, hard-core, potentials
and σA, σB the interaction radii of the pair of particles in
state A and B respectively. The same σ’s are used for the
Van der Waals and electrostatics interactions. Normally
the Lennard-Jones potential is used for the Van der
Waals interactions, and then the σ’s are conveniently
chosen as the Lennard-Jones radii. Linear potential inter-
polation is obtained by setting the soft-core parameter α
to zero. For α>0 (normally a value around 1.5 is used),
the singularities of the potential at r=0 for intermediate
values of λ are removed. This makes it possible to let
particles appear and disappear without encountering
singularities in the potential, forces or ∂H(λ)/∂λ. A
more detailed description of the soft-core Lennard-Jones
potential has been published by Beutler et al. [36] In
GROMACS, the electrostatics and Van der Waals poten-
tials are interpolated in the same manner to avoid creat-
ing multiple minima in the total non-bonded interaction
between a pair of particles. Free energy calculations can
be performed with all types of non-bonded electrostatics
present in GROMACS, and with Lennard-Jones interac-
tions. The Buckingham potential is not compatible with
the soft-core formulation, but can be used with linear in-
terpolation between the A and B states.

Force fields

The GROMOS87 [1] and GROMOS96 [37, 38] force
fields for general biomolecular simulations are distribut-
ed with the current version of GROMACS, and fully in-
tegrated in the sense that complete topologies can be
generated automatically from e.g. a Protein Data Bank
file. The OPLS force field [39] has also been used in
some GROMACS simulations. [40] Due to the clear text
topology format it is straightforward to use any other
united-atom or all-atom force field based on the general
types of potential functions implemented in the code;
there are for instance several different parameter sets for
phospholipid molecules that have been used. [41, 42]
Small molecules are easy to build and topology descrip-
tions for e.g. a number of water models are available.
This includes SPC, [43] SPC/E, [44] TIP3P and TIP4P,
[45] TIP5P, [46] SPC/RF and TIP4P/RF [47] and two
polarizable water models, of De Leeuw and Parker [48]
and of Van Maaren and Van der Spoel. [49] Finally, work
is in progress to include the OPLS [39] and AMBER
[50, 51] force fields in the GROMACS package.

Potential functions that are implemented in the soft-
ware include the Morse potential for bond stretching,
[52] the Ryckaert–Bellemans potential for torsion angles
[53] and the Buckingham potential for Van der Waals in-
teractions. Electrostatic potentials include both normal
Coulombic interactions, Coulomb modified by a reaction
field, [54, 55] modified by a shift [56, 57] or switch [1]
function. In addition, user-provided nonbonded pair po-
tentials can be applied if they adhere to the following
general form:

Vij(rij)=Aijf(rij)+Bijg(rij)+(qiqj)/(4πε0)h(rij) (7)

The user should then provide input files containing ta-
bles of f(x), g(x) and h(x) and their second derivatives,
from which energy and force are calculated using a cubic
spline interpolation algorithm.

Utility programs

The GROMACS package consists of about 75 execut-
able programs. Most of them are analysis tools for tra-
jectory or energy data generated by MD simulations. An
overview of these analysis tools is available in appendix
B. Here we briefly describe some of the most useful pro-
grams for setting up simulations. pdb2gmx generates
molecular topology files from a Protein Data Bank coor-
dinate file. The program automatically assigns bonds,
angles, dihedrals and charges based on a residue topolo-
gy database. Protonation states of ionizable groups are
by default set according to pH 7, but it is also possible to
select the states manually. For histidine, with a pKa of
about 6.5, the protonation state is determined from the
hydrogen bonding pattern, or if the sidechain is solvent-
exposed, a proton is put on the Nε only. The pdb2gmx
program can also convert hydrogen atoms to dummy
particles to remove the fastest degrees of freedom, in or-

der to make it possible to use long time steps. genbox
solvates molecules, either in a rectangular or triclinic
box for simulations employing periodic boundary condi-
tions or with a shell of solvent molecules. Mixed sol-
vents of any composition can also be handled. genion
places ions at positions of favorable electrostatic poten-
tial, and x2top generates a topology by detecting bonds
and angles present directly from raw coordinates. Addi-
tional programs are available for checking the internal
consistency of GROMACS files and for displaying the
contents of binary files.

Other computational chemistry algorithms

A number of additional algorithms and methods in com-
putational chemistry have been implemented in the
GROMACS package as separate programs. The nmrun
program performs normal mode analysis (NMA) [58, 59,
60] by calculating the Hessian matrix numerically from
the forces. Separate programs to analyze the obtained
Hessian are included. Principal component [61] or essen-
tial dynamics [62] analysis of molecular dynamics tra-
jectories is also available. These algorithms can further
be applied to collections of conformations of the same
molecule including experimentally determined struc-
tures. [63, 64] Finally, a parallel implementation of the
CONCOORD (prediction of protein conformational free-
dom from distance constraints) algorithm [65, 66] is pro-
vided in a master–slave algorithm that scales very well
with the number of processors.

Benchmarks

GROMACS benchmarks

To present an overview of the GROMACS molecular dy-
namics performance and compare the simulation speed
attainable on some of the most common hardware plat-
forms we have constructed a benchmark consisting of a
few typical systems, where possible from the published
literature:

● The Villin headpiece, a 35-residue peptide the struc-
ture of which has been determined by NMR. [67]
This was used in a peptide folding simulation of a mi-
crosecond by Duan and Kollman, [68] and we chose
an essentially identical setup for this benchmark. The
system was simulated with 3,000 water molecules in a
truncated octahedron unit cell (slightly less than
10,000 atoms in total), using a group-based cut-off for
both electrostatic and Lennard-Jones interactions at
0.8 nm. A time step of 2 fs was employed, LINCS
[32] was used to constrain protein bonds involving
hydrogens, while SETTLE [34] was used to maintain
the water geometry. Neighbor-lists were used and up-
dated after 20 fs. Temperature coupling [21] was ap-
plied with a time constant of 0.1 ps, and pressure cou-

311

312

pling with a time constant of 20 ps. For the peptide,
the GROMOS96 force field [37] was used, while the
water was described with the TIP3P model. [45]

● The larger lysozyme protein (pdb entry 2LZM) [69]
using the GROMOS96 force field [37] in SPC water.
[43] The total number of atoms was 23,207. All hy-
drogens on the protein were treated as dummy parti-
cles to remove the fast bond and angle vibrations, al-
lowing a time step of 4 fs. [33] A rhombic dodecahe-
dron simulation box was used, which is the most
spherical alternative, and hence most suited to globu-
lar proteins. A twin-range group-based cut-off scheme
was used for both Coulomb and Lennard-Jones. Inter-
actions within 0.9 nm were calculated every step, and
long-range forces out to 1.4 nm updated every five
time steps during neighbor-list generation.

● To assess the performance of the lattice summation
code, the lysozyme system was also benchmarked
with the cut-off for Coulomb interactions replaced
with the smooth Particle Mesh Ewald algorithm. [27,
28] The full direct and reciprocal space parts were
calculated each step and a lattice spacing of 0.12 nm
used. The direct space part of the Coulomb interac-
tion was cut off at 0.9 nm while the Lennard-Jones in-
teraction was calculated using a twin-range cut-off of
0.9 and 1.4 nm, as in the previous benchmark. Hence
we can assess the computational cost of moving from
a reasonable cut-off scheme to a much more accurate
model employing PME.

● A phospholipid membrane, consisting of 1,024 di-
palmitoylphosphatidylcholine (DPPC) lipids in a bi-
layer configuration with 23 water molecules per lipid,
for a total of 121,856 atoms. The characteristics of
this particular system have been described extensively
by Lindahl and Edholm. [70, 71] It was simulated
with a twin-range group-based cut-off of 1.8 nm for
electrostatics and 1.0 nm for Van der Waals interac-
tions. The long-range Coulomb forces between
1.0 nm and 1.8 nm were updated every tenth integra-
tion step during neighbor-list generation. The force
field described by Berger et al. [42] was used for the
lipids while the water was simulated with the SPC
model. [43]

● A 6,000-unit polyethylene molecule modeled with an-
isotropic united atoms. [72] This means the bonded
forces act on the position of the carbon, while the

Lennard-Jones interaction site is a united atom dis-
placed to the center of the CH2 group. The force field
of Boyd and coworkers was used, [73] with flexible
bonds and a 1 fs time step. A 0.9 nm cut-off was em-
ployed for Lennard-Jones interactions and dispersion
corrections applied. Although the anisotropic interac-
tion sites increase the particle number to 12,000 they
are easily implemented as dummy atoms and the
computational cost is very close to that of a 6,000
particle system.

Six different machines were used for the full benchmark:
800 MHz AMD Athlon and dual 800 MHz Intel Pentium
III processors running Linux (using gcc compilers), an
SGI O200 equipped with a 270 MHz MIPS R12000, a
Sun Ultra 10 with a 440 MHz Ultrasparc IIi, a Compaq
ES40 with a 667 MHz Alpha 21264, and finally a single
395 MHz Power3 processor on an IBM SP2 winterhawk-
2 node. The parallelization capabilities of the code were
examined by running the lipid membrane benchmark us-
ing different number of processors on the IBM SP2 and
on a low-cost Linux cluster of dual 800 MHz Pentium III
machines using 100 Mbps ethernet communication. The
parallel efficiency S is given by

S=tN/(Nt1) (8)

where tx is the performance on x processors. The results
of the benchmarks are presented in Tables 1 and 2;
thanks to the GROMACS SSE and 3DNow! assembly
loops, the performance of the fast (expensive) Alpha and
IBM processors is essentially matched by the PC hard-
ware which is almost an order of magnitude cheaper, not
to mention the performance of the dual processor Pent-
ium III. This makes Linux and x86 processors a very at-
tractive alternative for molecular dynamics simulations
in most cases, as has been noted before. [74] The µs sim-
ulation of Duan and Kollman [68] could in principle be
reproduced using a single dual Pentium III machine
within 8 months. Furthermore, we see from the lysozyme
benchmarks that the use of particle mesh Ewald is only
slightly slower than using a cut-off.

For large-scale parallelization, the IBM Power Paral-
lel architecture shows very good scaling. Due to better
cache usage and the extremely high intra-node MPI
bandwidth it even exhibits superscaling (S>100%) when
no communication between different nodes is necessary.

Table 1 Benchmark system performance presented as ps/day (i.e.
higher numbers are better) for a few common processor architec-
tures. The hardware used was 800 MHz AMD Athlon and Intel
Pentium III (P3) machines, a 270 MHz MIPS R12000 (SGI
O200), a 440 MHz Sun Ultra 10, a Compaq ES40 (Alpha

21264/667 MHz single processor), and finally a single 395 MHz
Power3 processor on an IBM SP2 node. The second column indi-
cates the time steps ∆t used for each system. Additional details on
the simulation parameters are discussed in the benchmark section

System ∆t (fs) Athlon P3 P3-SMP R12000 Ultra Power3 Alpha

Villin 2 2412 2330 4080 1129 1115 2109 2982
Lys/Cut 4 622 662 1115 326 310 607 846
Lys/PME 4 456 455 608 311 250 393 709
DPPC 2 41 46 106 27 25 49 61
Polyethylene 1 1001 960 1385 910 760 1163 1670

313

It should be possible in general to increase the perfor-
mance further by explicitly using thread and shared
memory parallelization on SMP machines such as the
IBM power nodes. On the SMP Pentium III we also find
superscaling due to more effective cache usage. In fact,
since the modern Pentium III processors only have
256 kb cache, performance is degraded considerably for
large systems, which is amply demonstrated by the su-
perscaling factor of 116% for the DPPC benchmark. Fi-
nally our parallel benchmark shows (Table 2) that 16
Pentium III CPUs effectively have the same parallel per-
formance as eight IBM Power3 processors.

Other benchmarks

Since a considerable amount of time was spent optimiz-
ing GROMACS it is instructive to compare its perfor-
mance to that of other popular packages. To this end
we have run benchmark simulations from the AMBER
suite, [50] from the CHARMM suite [75] and from
GROMOS96. [76] We have attempted to mimic the orig-
inal simulation as closely as possible. More in particular,
the AMBER benchmark (4,096 water in a cubic box) us-
es the PME algorithm [27, 28] with a cut-off of 0.95 nm,
the CHARMM benchmark (CO-MyoGlobin in a sphere
of water molecules) uses a shift function to force the po-
tential to zero over a range from 1.2 to 1.4 nm, while the

GROMOS96 benchmark (Thrombin in a truncated octa-
hedron box filled with water) uses a reaction field com-
bined with a twin-range cut-off of 0.8/1.4 nm. All these
features are present in GROMACS, allowing for a fair
comparison. We have compared the fastest reported re-
sults for the other packages to GROMACS running on a
single P3-800 and a Compaq ES40. The resulting num-
bers are presented in Table 3. Clearly, GROMACS
is considerably faster than any other package. It is inter-
esting to see that GROMACS on a single P3-800 is
also considerably faster than CHARMM run on the
NEC-SX4, one of the fastest supercomputers available
today. The difference between GROMACS and AMBER
is not as large as with the other packages, but this is due
to the PME algorithm for which both packages use the
same (original) implementation. The difference between
the two is thus mainly due to faster calculation of the
short-range forces. A comparison between GROMACS
and AMBER without PME is given by the Villin bench-
mark (see previous paragraph). Finally it should be
stressed here once more that the GROMACS code uses
single precision while the other packages use double pre-
cision floating-point calculations. Depending on the ar-
chitecture of the machine this can make a difference of
between 0 (IBM) and 100% (Pentium, due to lack of
double precision SSE routines). On other RISC architec-
tures such as the Alpha processors the runtime would be
increased by a relatively small amount. In general we

Table 2 Parallel simulation performance versus number of proces-
sors N for the DPPC benchmark system on an IBM SP2 machine
(395 MHz, four processors per node) and a Pentium III cluster (du-
al 800 MHz configurations) using switched 100 Mbps ethernet
communication. The result is presented both as ps/day (higher is

better) and scaling efficiency S is given by Equation (8). Due to
better cache usage combined with high shared memory bandwidth,
both the SP2 and the Pentium III exhibit significant superscaling
(S>100%) on a single node. The Pentium performance, however,
drops significantly when ethernet communication is involved

N 1 2 4 8 12 16 20 24 32

SP2/Power 49 105 205 387 537 694 796 884 1019
Scaling (%) 100 107 104 99 92 89 81 75 65
Pentium III 46 106 174 274 327 394
Scaling (%) 100 116 95 75 60 54

Table 3 Selected benchmark from other popular MD packages.
Fastest reported results for each of these benchmarks (time in sec-
onds, i.e. lower is better) are compared to running the same
system with GROMACS on a single Pentium 3-800 MHz and a
Compaq ES40 (Alpha 21264/667 MHz). Note: the AMBER
benchmark (http://www.amber.ucsf.edu/) uses PME with a cut-off
of 0.95 nm, the CHARMM benchmark [75] uses a shift function
which shifts the potential to zero from 1.2–1.4 nm, while the
GROMOS96 benchmark [76] uses a twin-range cut-off of

0.8/1.4 nm in which the long-range contribution to the forces and
energy is updated every fifth MD step during neighbor searching
and a reaction field is used for the Coulomb interactions. Further-
more the number of time steps was increased from 10 to 100 in the
case of the GROMOS96 benchmark. For the GROMACS equiva-
lent of the CHARMM benchmark the number of water molecules
was increased to 4,126 since GROMACS does not have a real all-
atom force field. This brings the total number of atoms to 14,026,
identical to the original CHARMM benchmark

Benchmark Other GROMACS

Fastest machine(s) Time Pentium 3 Alpha

AMBER Compaq Alpha ES40
(4096 Water) 21264/667 MHz 62 36 27
CHARMM NEC SX-4 813
(MbCO+3830 Water) ES40/667 1375 463 510
GROMOS96 DEC AS8400
(Thrombin+5427 Water) 21264/575 MHz 168 31 26

consider single precision to be accurate enough for mo-
lecular dynamics since the main error in the energy is de-
termined by other factors such as cut-off, temperature
scaling algorithms etc.

Conclusions and future development

Amidst the general molecular simulation packages avail-
able to researchers, we believe GROMACS stands out
for a number of reasons. First, the code is extremely well
tuned for the most common hardware in modern work-
stations, especially AMD Athlon/Duron and Intel Pent-
ium III/IV processors, which also are common in mod-
ern Linux clusters. This, in combination with advanced
algorithmic optimizations, makes it very hard to beat the
GROMACS code performance-wise. Second, the pack-
age provides a broad range of options for molecular sim-
ulations, several of which make it possible to extend
simulations much further using longer time steps and re-
moval of fast degrees of freedom. There is also a wealth
of analysis tools, and innovative features like hardware-
independent and precision-independent trajectory for-
mats. Third, the code is not merely free, but distributed
under the GNU General Public License (GPL). This
means any user is free to redistribute it, although we
strongly suggest modifications are communicated back
to the GROMACS authors for inclusion in the official
distribution, in order to guarantee the scientific integrity
of the software.

Several new features are planned for future
GROMACS versions. A hybrid quantum mechanics/
molecular mechanics (QM/MM) interface between
GROMACS and the quantum chemistry package
GAMESS-UK [77] is being developed that will allow
the user to partition a system into a QM and MM region.
This will provide a possibility to study bond-breaking
and bond-forming processes in the QM region by solving
the electronic Schrödinger equation. The MM region,
which only influences the reaction via electrostatic inter-
actions, is treated by conventional force-field methods.
The main features of our hybrid will include geometry
optimization, intrinsic reaction coordinate calculation,
and transition-state optimization. A prominent applica-
tion of the methodology is the elucidation of enzymatic
reaction pathways. Other development efforts include a
twin-level parallelization setup, using explicit multi-
threading inside each node and MPI to communicate be-
tween nodes. This will make both intra-node and inter-
node parallelization on SMP machines (including the
ones used in the benchmarks, Table 2) more efficient, be-
cause fewer, but larger, chunks of data are communicat-
ed between the nodes. Furthermore a new self-descrip-
tive file format based on XML (extensible markup lan-
guage) is planned. The most recent version of the official
GROMACS distribution and additional on-line resources
can be found on the project homepage http://www.gro-
macs.org/, hosted by the Department of Biophysical
Chemistry, University of Groningen.

Acknowledgements We thank Gerrit Groenhof for a sneak pre-
view of the QM/MM interface code that is currently under con-
struction. Maija Lahtela-Kakkonen and the Center for Scientific
Computing, Espoo, Finland are gratefully acknowledged for pro-
viding access to their IBM SP2 for benchmarking. Frans van
Hoesel is acknowledged for creating and implementing the porta-
ble compressed trajectory format. Finally, we acknowledge stimu-
lating discussions with Herman Berendsen and Alan Mark.

Appendix A. Additional package features

GROMACS implements a wide range of algorithms
from molecular dynamics and related areas. Apart from
the general architecture and methods discussed before,
some of the most prominent features are:

● Support for Reaction field [55] potentials that can be
applied to liquid systems, and the generalized reaction
field (GRF) approach due to Tironi et al. [78] (note
that this is different from the GRF of Alper and
Levy), [79] which can be used for ionic systems.
There is no torque due to a reaction field included in
the software. [80]

● A force shifting algorithm that changes energies and
forces to approach zero smoothly at the cut-off radius,
[56] as well as a switch function, [1] in which the
energy goes to zero smoothly, but not the forces.
GROMACS can also apply analytic corrections to ei-
ther energy or both energy and pressure for dispersion
interactions beyond the cut-off. [81]

● Energy minimization using either steepest descent or
conjugate gradients algorithms.

● Support for determining the potential of mean force
when pulling a molecule (e.g. a lipid out of a mem-
brane). [82] With this code it is possible to simulate
atomic force microscopy experiments.

● NMR refinement based on time average distance re-
straints [83, 84] and ensemble averaged distance re-
straints. [85, 86]

● X-ray interaction with matter can be simulated to
model the effects of radiation damage on a sample.
[87]

● Shell molecular dynamics [88] introduces shell parti-
cles on nuclei or other sites in a molecule to represent
the electronic degrees of freedom [49, 89] and hence
accounts for polarizability in the simulation. The shell
particles positions can be optimized at each time step
using a steepest descent energy minimization.

● Dummy or virtual particles can be used, either to ex-
tend a model like in TIP4P [45] or TIP5P [46] water,
or to remove rapid oscillations with small amplitude
and hence allow for increased time steps. [33] Con-
struction of dummy positions from constituting atoms
and distribution of forces to constituting atoms is
done according to Reference [21]

● Extended sampling techniques [90, 91] based on ei-
genvectors from essential dynamics or normal modes
from normal mode analysis. The input files necessary
for this type of simulation can be prepared with the
WhatIF [92] software.

314

● Non-equilibrium molecular dynamics options, includ-
ing accelerations on arbitrary groups of atoms and
electric fields.

● Non-equilibrium methods for determining the shear
viscosity of liquids. A cosine-shaped velocity profile
is generated using a cosine-shaped acceleration pro-
file. The viscosity can then be calculated from the ra-
tio of the two amplitudes.

● Automated force field optimization using general
coupling theory. [93, 94] This has been applied suc-
cessfully to optimizations of parameters for novel wa-
ter models. [47, 49]

Appendix B. Analysis tools

A large number of complete programs with extensive op-
tions to perform common trajectory analyses are distrib-
uted with the GROMACS package. Most of these ana-
lyses can be performed either on default, or user defined
atom selections. Advanced atom selections can be stored
in a so-called index file, which in turn is generated by an
interactive program (make_ndx). This approach yields a
very flexible way of analyzing trajectories. The analysis
tasks automated in this way include, among others:

● Detailed analysis of energy components, including in-
teractions between user defined groups of atoms.
Fluctuations and drift are automatically calculated.
The reported statistics is not calculated from the data
points stored in the energy file, but as the true values
based on all the simulation time steps.

● Mean square displacement of groups of atoms and ve-
locity autocorrelation functions that can be used to
determine diffusion coefficients. [81]

● Transverse current autocorrelation functions to deter-
mine the shear viscosity from an equilibrium simula-
tion.

● Root mean square deviations between a reference
structure and a trajectory, or a complete RMSD ma-
trix of a trajectory against itself or against another tra-
jectory.

● Dielectric analysis to calculate dielectric constants
and Kirkwood factors [95] and Cole–Cole plots.

● Radial distribution functions.
● Analysis of the orientation of solvent molecules

around solutes.
● Hydrogen bond analysis based on geometric criteria.
● Analysis of formation and breaking of salt bridges.
● Protein secondary structure can be analyzed using a

GROMACS front-end to the dictionary of secondary
structure in proteins (DSSP) [96] program. Pretty
(PostScript) plots of the secondary structure as a func-
tion of time can be made.

● Solvent accessible surface of macromolecules can be
computed from trajectories or structures using the al-
gorithms of Eisenhaber et al. [97]

● Chemical shifts can be computed based on Φ/Ψ an-
gles [98] or protein conformations. [99]

● Relaxation times for molecular motions can be calcu-
lated in a form directly comparable to NMR results.
[47]

● Order parameters for lipid carbon tails. [100, 101]
● Density profiles, either along a box axis which is use-

ful for interface studies, [102, 103] or radial for sys-
tems like a micel. [104]

● Analysis of a bundle of axes: the distance of the axes
to the center and two different tilt angles. This is es-
pecially useful for transmembrane helices.

● Ramachandran plots. [105] A time dependent Ramac-
handran plot can be visualized with an X program that
displays the Ramachandran plot for all frames in a
molecular dynamics trajectory as a function of time.

● A special program to study all dihedral angles in pro-
teins, as well as a more general tool for angle and di-
hedral analysis.

● Analysis of bond length distributions.
● A clustering program to combine similar conforma-

tions of a molecule, with support for several different
algorithms. [106, 107]

● The radius of gyration of arbitrary sets of atoms can
be computed, and a principal component analysis of
the moment of inertia applied to make the result inde-
pendent of the orientation.

● Positional root mean square fluctuations that can be
converted to B-factors.

References

1. van Gunsteren WF, Berendsen HJC, Biomos BV (1987) Gro-
mos-87 manual. Nijenborgh 4, 9747 AG Groningen, The
Netherlands

2. Askew CR, Carpenter DB, Chalker JT, Hey AJG, Nicole DA
(1986) Comput Phys Commun 42:21–26

3. Raine ARC, Fincham D, Smith W (1989) Comput Phys Com-
mun 55:13–30

4. Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, van
Drunen R, van der Spoel D, Sijbers A, Keegstra H, Reitsma B,
Renardus MKR (1993) In: de Groot RA, Nadrchal J (eds)
Physics computing 92. World Scientific, Singapore, pp
252–256

5. Berendsen HJC, van der Spoel D, van Drunen R (1995) Com-
put Phys Commun 91:43–56

6. van der Spoel D, Berendsen HJC (1994) In: van der Steen A.
(ed) Aspects of computational science. National Computing
Facilities Foundation: P.O. Box 93120, 2509 AC Den Haag,
The Netherlands

7. Frigo M, Johnson SG (1998) In: ICASSP Conference Proceed-
ings, Vol 3, Seattle, pp 1381–1384

8. Frigo M (1999) ACM SIGPLAN NOTICES 34:169–180
9. van der Spoel D, van Buuren AR, Apol E, Meulenhoff PJ,

Tieleman DP, Sijbers ALTM, Hess B, Feenstra KA, Lindahl E,
van Drunen R, Berendsen HJC (2001) Gromacs User Manual
version 3.0. Nijenborgh 4, 9747 AG Groningen, The Nether-
lands Internet: http://www.gromacs.org

10. Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, van
Drunen R, van der Spoel D, Sijbers A, Keegstra H, Reitsma B,
Renardus MKR (1993) In: de Groot RA, Nadrchal J (eds)
Physics computing 92. World Scientific, Singapore, pp
257–261

11. Bekker H, Dijkstra EJ, Renardus MKR, Berendsen HJC
(1995) Mol Simul 14:137–152

12. Verlet L (1967) Phys Rev 159:98–103

315

13. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992)
Numerical recipes in C. Cambridge University Press, Cam-
bridge

14. AMD (2000) 3DNow! technology manual. Advanced Micro
Devices.

15. Intel (1999) Intel architecture software developer’s manual,
Vol. 2. Instruction set reference. Intel Corporation

16. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph
14:33–38

17. Laaksonen L (2001) gOpenMol, Version 2.0. Center for scien-
tific computing, Espoo, Finland http://www.csc.fi/~laaksone/
gopenmol/gopenmol.html

18. Grace Development Team (2001) Grace 5.1.3. http://plasma-
gate.weizmann.ac.il/Grace

19. van Gunsteren WF, Berendsen HJC (1988) Mol Simul 1:173–
185

20. Berendsen HJC, van Gunsteren WF (1986) In: Ciccotti G,
Hoover WG (eds) Molecular-dynamics simulation of statisti-
cal-mechanical systems. North-Holland, Amsterdam, pp
43–65

21. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984)
J Chem Phys 81:3684–3690

22. Parinello M, Rahman A (1981) J Appl Phys 52:7182–7190
23. Nosé S, Klein ML (1983) Mol Phys 50:1055–1076
24. Nosé S (1984) Mol Phys 52:255–268
25. Hoover WG (1985) Phys Rev A 31:1695–1697
26. Hockney RW, Eastwood JW (1981) Computer simulation us-

ing particles. McGraw-Hill, New York
27. Darden T, York D, Pedersen L (1993) J Chem Phys 98:

10089–10092
28. Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen

LG (1995) J Chem Phys 103:8577–8592
29. Ewald PP (1921) Ann Phys 64:253–287
30. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput

Phys 23:327–341
31. Barth E, Kuczera K, Leimkuhler B, Skeel D (1996) J Comput

Chem 16:1192–1209
32. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997)

J Comput Chem 18:1463–1472
33. Feenstra KA, Hess B, Berendsen HJC (1999) J Comput Chem

20:786–798
34. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962
35. Kirkwood JG (1935) J Chem Phys 3:300
36. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van

Gunsteren WF (1994) Chem Phys Lett 222:529–539
37. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH,

Krüger P, Mark AE, Scott WRP.; Tironi IG (1996) Biomolecu-
lar simulation: the GROMOS96 manual and user guide. Hoch-
schulverlag AG an der ETH Zürich, Zürich, Switzerland

38. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter
SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren
WF (1999) J Phys Chem A 103:3596–3607

39. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc
110:1657–1666

40. van der Spoel D, van Buuren AR, Tieleman DP, Berendsen
HJC (1996) J Biomol NMR 8:229–238

41. Tieleman DP, Berendsen HJC (1996) J Chem Phys 105:
4871–4880

42. Berger O, Edholm O, Jähnig F (1997) Biophys J 72:2002–
2013

43. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J
(1981) In: Pullman B (ed) Intermolecular forces. Reidel,
Dordrecht, pp 331–342

44. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys
Chem 91:6269–6271

45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW,
Klein ML (1983) J Chem Phys 79:926–935

46. Mahoney MW, Jorgensen WL (2000) J Chem Phys 112:8910–
8922

47. van der Spoel D, van Maaren PJ, Berendsen HJC (1998) J
Chem Phys 108:10220–10230

48. de Leeuw NH, Parker SC (1998) Phys Rev B 58:13901–13908

49. van Maaren PJ, van der Spoel D (2001) J Phys Chem B 105:
2618–2626

50. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Com-
put Chem 7:230–252

51. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM,
Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman
PA (1995) J Am Chem Soc 117:5179–5197

52. Morse PM (1929) Phys Rev 34:57–64
53. Ryckaert J, Bellemans A (1975) Chem Phys Lett 30:123–125
54. Watts RO (1974) Mol Phys 28:1069–1083
55. Neumann M, Steinhauser O (1980) Mol Phys 39:437–454
56. Berendsen HJC (1993) In: van Gunsteren WF, Weiner PK,

Wilkinson AJ (eds) Computer simulation of biomolecular sys-
tems. ESCOM, Leiden, pp 161–181

57. van der Spoel D, van Buuren AR, Apol E, Meulenhoff PJ,
Tieleman DP, Sijbers ALTM, Hess B, Feenstra KA, van
Drunen R, Berendsen HJC (1999) Gromacs User Manual ver-
sion 2.0. Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Internet: http://www.gromacs.org

58. Gõ N, Noguti T, Nishikawa T (1983) Proc Natl Acad Sci USA
80:3696–3700

59. Brooks B, Karplus M (1983) Proc Natl Acad Sci USA 80:
6571–6575

60. Levitt M, Sander C, Stern PS (1983) Proc Natl Acad Sci USA
10:181–199

61. Garcia AE (1992) Phys Rev Lett 68:2696–2699
62. Amadei A, Linssen ABM, Berendsen HJC (1993) Proteins:

Struct Funct Gen 17:412–425
63. van der Spoel D, de Groot BL, Hayward S, Berendsen HJC,

Vogel H J (1996) Protein Sci 5:2044–2053
64. de Groot BL, Hayward S, van Aalten DMF, Amadei A, Be-

rendsen HJC (1998) Proteins: Struct Funct Gen 31:116–127
65. de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vri-

end G, Berendsen HJC (1997) Proteins: Struct Funct Gen
29:240–251

66. de Groot BL, Vriend G, Berendsen HJC (1999) J Mol Biol
286:1241–1249

67. McKnight CJ, Matsudaira PT, Kim PS (1997) Nature Struct
Biol 4:180–184

68. Duan Y, Kollman PA (1998) Science 282:740–744
69. Weaver LH, Matthews BW (1987) J Mol Biol 193:189
70. Lindahl E, Edholm O (2000) J Chem Phys 113:3882–3893
71. Lindahl E, Edholm O (2000) Biophys J 79:426–433
72. Toxvaerd S (1990) J Chem Phys 93:4290–4295
73. Pant PK, Han J, Smith GD, Boyd RH (1993) J Chem Phys 99:

597–604
74. Rives JT, Jorgensen WL (1996) J Comput Chem 17:1385–1386
75. Brooks BR, Hodoscek MC (1992) Des Autom News 7:16–22
76. Bonvin AMJJ, Mark AE, van Gunsteren WF (2000) Comput

Phys Commun 128:550–557
77. Gamess-UK is a package of ab initio programs written by

M.F. Guest, J.H. van Lenthe, J. Kendrick, K. Schoeffel, P.
Sherwood, and R.J. Harrison, with contributions from R.D.
Amos, R.J. Buenker, M. Dupuis, N.C. Handy, I.H. Hillier, P.J.
Knowles, V. Bonacic-Koutecky, W. von Niessen, A.P. Rendell,
V.R. Saunders, and A. Stone. The package is derived from the
original gamess code due to M. Dupuis, D. Spangler and J.
Wendoloski, NRCC software catalog, Vol. 1, Program No.
QG01 (GAMESS), 1980.

78. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995)
J Chem Phys 102:5451–5459

79. Alper H, Levy RM (1993) J Chem Phys 99:9847–9852
80. Roberts JE, Woodman BL, Schnitker J (1996) Mol Phys 88:

1089–1108
81. Allen MP, Tildesley DJ (1987) Computer simulations of liq-

uids. Oxford Science Publications, Oxford
82. Marrink SJ, Bergera O, Tieleman DP, Jähnig F (1998) Biophys

J 74:931–943
83. Torda AE, Scheek RM, van Gunsteren WF (1989) Chem Phys

Lett 157:289–294
84. Torda AE, Scheek RM, van Gunsteren WF (1990) J Mol Biol

214:223–235

316

97. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M
(1995) J Comput Chem 16:273–284

98. Wishart DS, Nip AM (1998) Biochem Cell Biol 76:153–163
99. Williamson MP, Asakura T (1993) J Magn Reson Ser B

101:63–71
100. Marrink SJ, Berkowitz M, Berendsen HJC (1993) Langmuir

9:3122–3131
101. Egberts E, Marrink SJ, Berendsen HJC (1994) Eur Biophys J

22:423–436
102. van Buuren AR, Berendsen HJC (1994) Langmuir 10:1703–

1713
103. van Buuren AR, de Vlieg J, Berendsen HJC (1995)

Langmuir 11:2957–2965
104. Tieleman DP, van der Spoel D, Berendsen H JC (2000)

J Phys Chem B 104:6380–6388
105. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963)

J Mol Biol 7:95–99
106. Torda AE, van Gunsteren WF (1994) J Comput Chem 15:

1331–1340
107. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren

WF, Mark AE (1999) Angew Chem Int Ed Engl 38:236–240

317

85. Scheek RM, Torda AE, Kemmink J, van Gunsteren WF (1991)
Computational In: Hoch J, Poulsen FM, Redfield C (eds) As-
pects of the Study of Biological Macromolecules by Nuclear
Magnetic Resonance. Plenum, New York, pp 209–217

86. Kemmink J, Scheek RM (1995) J Biomol NMR 6:33–40
87. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J

(2000) Nature 406:752–757
88. Dick BG, Overhauser AW (1958) Phys Rev 112:90–103
89. Jordan PC, van Maaren PJ, Mavri J, van der Spoel D, Berendsen

HJC (1995) J Chem Phys 103:2272–2285
90. de Groot BL, Amadei A, van Aalten DMF, Berendsen HJC

(1996) J Biomol Struct Dyn 13:741–751
91. de Groot BL, Amadei A, Scheek RM, van Nuland NAJ,

Berendsen HJC (1996) Proteins: Struct Funct Genet 26:314–
322

92. Vriend G (1990) J Mol Graph 8:52–56
93. Chung JW (1993) Force field optimisation using coupling the-

ory. Master’s thesis, University of Groningen
94. Njo SL, Gunsteren WF, Müller-Plathe F (1995) J Chem Phys

102:6199–6207
95. Neumann M (1986) J Chem Phys 85:1567–1580
96. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

